Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Lipid Res ; 65(1): 100481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008260

RESUMO

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo
2.
PLoS One ; 18(12): e0295244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039287

RESUMO

BACKGROUND: Parenteral (intravenous) nutrition is lifesaving for patients with intestinal failure, but long-term use of parenteral nutrition often leads to liver disease. SEFA-6179 is a synthetic medium-chain fatty acid analogue designed to target multiple fatty acid receptors regulating metabolic and inflammatory pathways. We hypothesized that SEFA-6179 would prevent hepatosteatosis and lipotoxicity in a murine model of parenteral nutrition-induced hepatosteatosis. METHODS: Two in vivo experiments were conducted. In the first experiment, six-week-old male mice were provided an ad lib fat-free high carbohydrate diet (HCD) for 19 days with orogastric gavage of either fish oil, medium-chain triglycerides, or SEFA-6179 at a low (0.3mmol/kg) or high dose (0.6mmol/kg). In the second experiment, six-week-old mice were provided an ad lib fat-free high carbohydrate diet for 19 days with every other day tail vein injection of saline, soybean oil lipid emulsion, or fish oil lipid emulsion. Mice then received every other day orogastric gavage of medium-chain triglyceride vehicle or SEFA-6179 (0.6mmol/kg). Hepatosteatosis was assessed by a blinded pathologist using an established rodent steatosis score. Hepatic lipid metabolites were assessed using ultra-high-performance liquid chromatography-mass spectrometry. Effects of SEFA-6179 on fatty acid oxidation, lipogenesis, and fatty acid uptake in human liver cells were assessed in vitro. RESULTS: In the first experiment, mice receiving the HCD with either saline or medium-chain triglyceride treatment developed macrovesicular steatosis, while mice receiving fish oil or SEFA-6179 retained normal liver histology. In the second experiment, mice receiving a high carbohydrate diet with intravenous saline or soybean oil lipid emulsion, along with medium chain triglyceride vehicle treatment, developed macrovescular steatosis. Treatment with SEFA-6179 prevented steatosis. In each experiment, SEFA-6179 treatment decreased arachidonic acid metabolites as well as key molecules (diacylglycerol, ceramides) involved in lipotoxicity. SEFA-6179 increased both ß- and complete fatty oxidation in human liver cells, while having no impact on lipogenesis or fatty acid uptake. CONCLUSIONS: SEFA-6179 treatment prevented hepatosteatosis and decreased toxic lipid metabolites in a murine model of parenteral nutrition-induced hepatosteatosis. An increase in both ß- and complete hepatic fatty acid oxidation may underlie the reduction in steatosis.


Assuntos
Fígado Gorduroso , Óleo de Soja , Humanos , Masculino , Animais , Camundongos , Emulsões , Modelos Animais de Doenças , Nutrição Parenteral/efeitos adversos , Nutrição Parenteral/métodos , Ácidos Graxos/metabolismo , Óleos de Peixe , Fígado Gorduroso/patologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Carboidratos , Emulsões Gordurosas Intravenosas
3.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001909

RESUMO

The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter (GLUT) 1, while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter CD36 were decreased. This was supported by proteomic analysis, where expression of proteins involved in glucose uptake, glycolytic pathways, and the TCA cycle were enhanced, and expression of several proteins involved in fatty acid metabolism were reduced. Similar effects on energy metabolism were observed in human bone marrow stromal cells differentiated to osteoblastic cells incubated with conditioned medium from myotubes (SKM-CM), with increased glucose uptake and reduced oleic acid uptake. Proteomic analyses of the two conditioned media revealed many common proteins. Thus, our data may indicate a shift in fuel preference from fatty acid to glucose metabolism in both cell types, induced by conditioned media from the opposite cell type, possibly indicating a more general pattern in communication between these tissues.

4.
FASEB J ; 37(11): e23209, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779421

RESUMO

The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation. Fatty acid uptake in myotubes was negatively correlated with the lactate thresholds of the respective donors. DGAT2 inhibition lowered acetate uptake and oxidation in myotubes from all cohorts whereas DGAT1 inhibition had no effect. A positive correlation between acetate oxidation in myotubes and resting metabolic rate (RMR) from fatty acid oxidation in vivo was observed. Myotubes from athletes and IGR had higher rates of de novo lipogenesis from acetate that were normalized by DGAT2 inhibition. Moreover, DGAT2 inhibition in myotubes also resulted in increased insulin-induced Akt phosphorylation. The differential effects of DGAT1 and DGAT2 inhibition suggest that the specialized role of DGAT2 in esterifying nascent diacylglycerols and de novo synthesized FA is associated with synthesis of a pool of triacylglycerol, which upon hydrolysis results in effectors that promote mitochondrial fatty acid oxidation but decrease insulin signaling in skeletal muscle cells.


Assuntos
Diacilglicerol O-Aciltransferase , Fibras Musculares Esqueléticas , Masculino , Humanos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Glucose/metabolismo , Insulina , Acetatos , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo
5.
J Therm Biol ; 116: 103623, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542841

RESUMO

Transient potential (TRP) ion channels expressed in primary sensory neurons act as the initial detectors of environmental cold and heat, information which controls muscle energy expenditure. We hypothesize that non-neuronal TRPs have direct cellular responses to thermal exposure, also affecting cellular metabolism. In the present study we show expression of TRPA1, TRPM8 and TRPV1 in rat skeletal muscle and human primary myotubes by qPCR. Effects of TRP activity on metabolism in human myotubes were studied using radiolabeled glucose. FURA-2 was used for Ca2+ imaging. TRPA1, TRPM8 and TRPV1 were expressed at low levels in primary human myotubes and in m. gastrocnemius, m. soleus, and m. trapezius from rat. Activation of TRPA1 by ligustilide resulted in an increased glucose uptake and oxidation in human myotubes, whereas activation of TRPM8 by menthol and icilin significantly decreased glucose uptake and oxidation. Activation of heat sensing TRPV1 by capsaicin had no effect on glucose metabolism. Agonist-induced increases in intracellular Ca2+ levels by ligustilide and icilin in human myotubes confirmed a direct activation of TRPA1 and TRPM8, respectively. The mRNA expression of some genes involved in thermogenesis, i.e. peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), uncoupling protein (UCP) 1 and UCP3, were downregulated in human myotubes following TRPA1 activation, while the mRNA expression of TRPM8 and TRPA1 were downregulated following TRPM8 activation by menthol and icilin, respectively. Cold exposure (18 °C) of cultured myotubes followed by a short recovery period had no effect on glucose uptake and oxidation in the basal situation, however when TRPA1 and TRPM8 channels were chemically inhibited a temperature-induced difference in glucose metabolism was found. In conclusion, mRNA of TRPA1, TRPM8 and TRPV1 are expressed in rat skeletal muscle and human skeletal muscle cells. Modulation of TRPA1 and TRPM8 by chemical agents induced changes in Ca2+ levels and glucose metabolism in human skeletal muscle cells, indicating functional receptors.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Humanos , Ratos , Proteínas de Membrana , Mentol/farmacologia , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
6.
Metabol Open ; 18: 100234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37013149

RESUMO

Adipose tissue is one of the main regulative sites for energy metabolism. Excess lipid storage and expansion of white adipose tissue (WAT) is the primary contributor to obesity, a strong predisposing factor for development of insulin resistance. Sentrin-specific protease (SENP) 2 has been shown to play a role in metabolism in murine fat and skeletal muscle cells, and we have previously demonstrated its role in energy metabolism of human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism in primary human fat cells by using cultured primary human adipocytes to knock down the SENP2 gene. Glucose uptake and oxidation, as well as accumulation and distribution of oleic acid into complex lipids were decreased, while oleic acid oxidation was increased in SENP2-knockdown cells compared to control adipocytes. Furthermore, lipogenesis was reduced by SENP2-knockdown in adipocytes. Although TAG accumulation relative to total uptake was unchanged, there was increased mRNA expression of metabolically relevant genes such as UCP1 and PPARGC1A and mRNA and proteomic data revealed increased levels of mRNA and proteins related to mitochondrial function by SENP2-knockdown. In conclusion, SENP2 is an important regulator of energy metabolism in primary human adipocytes and its knockdown reduce glucose metabolism and lipid accumulation, while increasing lipid oxidation in human adipocytes.

7.
Front Bioeng Biotechnol ; 11: 1130693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034250

RESUMO

Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.

8.
Mol Metab ; 69: 101683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720306

RESUMO

OBJECTIVE: Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS: We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS: Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS: Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.


Assuntos
Tecido Adiposo Marrom , Proteômica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos , Adrenérgicos/metabolismo
9.
Front Physiol ; 13: 982842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467688

RESUMO

Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment.

10.
Metabolites ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355178

RESUMO

Metabolic alterations occurring in cancer cells have been seen to also occur in other tissues than cancerous tissue. For instance, cachexia, peripheral insulin resistance, or both are commonly seen in patients with cancer. We explored differences in substrate use in myotubes conditioned with the medium from a pancreatic cancer cell line, PANC-1, or primary human pancreatic cells, hPECs. Protein turnover was assessed using scintillation proximity assay, glucose and oleic acid handling were analyzed by substrate oxidation assay. We performed qPCR to study gene expression and immunoblotting and proteomic analyses to study protein expression. PANC-1-conditioned myotubes had an imbalance in protein turnover with decreased accumulation, increased decay, and decreased MYH2 gene expression. Glucose uptake decreased despite increased insulin-stimulated Akt phosphorylation. Fatty acid uptake increased, whereas fatty acid oxidation was unchanged, leading to accumulation of intracellular lipids (TAG) in PANC-1-conditioned myotubes. Secretome analyses revealed increased release of growth factors and growth factor receptor from PANC-1 cells, potentially affecting muscle cell metabolism. Myotubes exposed to pancreatic cancer cell medium displayed altered energy metabolism with increased protein/leucine turnover and lipid accumulation, while glucose uptake and oxidation reduced. This indicates production and release of substances from pancreatic cancer cells affecting skeletal muscle.

11.
Intensive Care Med Exp ; 10(1): 47, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346511

RESUMO

BACKGROUND: Mitochondrial dysfunction is a hallmark of both critical illness and propofol infusion syndrome and its severity seems to be proportional to the doses of noradrenaline, which patients are receiving. We comprehensively studied the effects of noradrenaline on cellular bioenergetics and mitochondrial biology in human skeletal muscle cells with and without propofol-induced mitochondrial dysfunction. METHODS: Human skeletal muscle cells were isolated from vastus lateralis biopsies from patients undergoing elective hip replacement surgery (n = 14) or healthy volunteers (n = 4). After long-term (96 h) exposure to propofol (10 µg/mL), noradrenaline (100 µM), or both, energy metabolism was assessed by extracellular flux analysis and substrate oxidation assays using [14C] palmitic and [14C(U)] lactic acid. Mitochondrial membrane potential, morphology and reactive oxygen species production were analysed by confocal laser scanning microscopy. Mitochondrial mass was assessed both spectrophotometrically and by confocal laser scanning microscopy. RESULTS: Propofol moderately reduced mitochondrial mass and induced bioenergetic dysfunction, such as a reduction of maximum electron transfer chain capacity, ATP synthesis and profound inhibition of exogenous fatty acid oxidation. Noradrenaline exposure increased mitochondrial network size and turnover in both propofol treated and untreated cells as apparent from increased co-localization with lysosomes. After adjustment to mitochondrial mass, noradrenaline did not affect mitochondrial functional parameters in naïve cells, but it significantly reduced the degree of mitochondrial dysfunction induced by propofol co-exposure. The fatty acid oxidation capacity was restored almost completely by noradrenaline co-exposure, most likely due to restoration of the capacity to transfer long-chain fatty acid to mitochondria. Both propofol and noradrenaline reduced mitochondrial membrane potential and increased reactive oxygen species production, but their effects were not additive. CONCLUSIONS: Noradrenaline prevents rather than aggravates propofol-induced impairment of mitochondrial functions in human skeletal muscle cells. Its effects on bioenergetic dysfunctions of other origins, such as sepsis, remain to be demonstrated.

12.
Bio Protoc ; 12(13): e4461, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35937928

RESUMO

Work in cold environments may have a significant impact on occupational health. In these and similar situations, cold exposure localized to the extremities may reduce the temperature of underlying tissues. To investigate the molecular effects of cold exposure in muscle, and since adequate methods were missing, we established two experimental cold exposure models: 1) In vitroexposure to cold (18°C) or control temperature (37°C) of cultured human skeletal muscle cells (myotubes); and 2) unilateral cold exposure of hind limb skeletal muscle in anesthetized rats (intramuscular temperature 18°C), with contralateral control (37°C). This methodology enables studies of muscle responses to local cold exposures at the level of gene expression, but also other molecular outcomes. Graphical abstract.

13.
Front Physiol ; 13: 928195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874526

RESUMO

Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.

14.
Mol Biol Rep ; 49(7): 6005-6017, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364719

RESUMO

BACKGROUND: Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells. METHODS AND RESULTS: After generation of skeletal muscle cells with stable SLN knockdown (SLN-KD), cell viability, glucose and oleic acid (OA) metabolism, mitochondrial function, as well as gene expressions were determined. Depletion of SLN did not influence cell viability. However, glucose and OA oxidation were diminished in SLN-KD cells compared to control myotubes. Basal respiration measured by respirometry was also observed to be reduced in cells with SLN-KD. The metabolic perturbation in SLN-KD cells was reflected by reduced gene expression levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and forkhead box O1 (FOXO1). Furthermore, accumulation of OA was increased in cells with SLN-KD compared to control cells. These effects were accompanied by increased lipid formation and incorporation of OA into complex lipids. Additionally, formation of complex lipids and free fatty acid from de novo lipogenesis with acetate as substrate was enhanced in SLN-KD cells. Detection of lipid droplets using Oil red O staining also showed increased lipid accumulation in SLN-KD cells. CONCLUSIONS: Overall, our study sheds light on the importance of SLN in maintaining metabolic homeostasis in human skeletal muscle. Findings from the current study suggest that therapeutic strategies involving SLN-mediated futile cycling of SERCA might have significant implications in the treatment of obesity and associated metabolic disorders.


Assuntos
Proteolipídeos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Glucose/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Obesidade/genética , Proteolipídeos/genética , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
16.
J Hepatol ; 76(4): 800-811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34915054

RESUMO

BACKGROUND & AIMS: Although long-chain omega-3 fatty acids (LCn-3FAs) regulate inflammatory pathways of relevance to non-alcoholic steatohepatitis (NASH), their susceptibility to peroxidation may limit their therapeutic potential. We compared the metabolism of eicosapentaenoic acid (EPA) with an engineered EPA derivative (icosabutate) in human hepatocytes in vitro and their effects on hepatic glutathione metabolism, oxidised lipids, inflammation, and fibrosis in a dietary mouse model of NASH, and in patients prone to fatty liver disease. METHODS: Oxidation rates and cellular partitioning of EPA and icosabutate were compared in primary human hepatocytes. Comparative effects of delayed treatment with either low- (56 mg/kg) or high-dose (112 mg/kg) icosabutate were compared with EPA (91 mg/kg) or a glucagon-like peptide 1 receptor agonist in a choline-deficient (CD), L-amino acid-defined NASH mouse model. To assess the translational potential of these findings, effects on elevated liver enzymes and fibrosis-4 (FIB-4) score were assessed in overweight, hyperlipidaemic patients at an increased risk of NASH. RESULTS: In contrast to EPA, icosabutate resisted oxidation and incorporation into hepatocytes. Icosabutate also reduced inflammation and fibrosis in conjunction with a reversal of CD diet-induced changes in the hepatic lipidome. EPA had minimal effect on any parameter and even worsened fibrosis in association with depletion of hepatic glutathione. In dyslipidaemic patients at risk of NASH, icosabutate rapidly normalised elevated plasma ALT, GGT and AST and reduced FIB-4 in patients with elevated ALT and/or AST. CONCLUSION: Icosabutate does not accumulate in hepatocytes and confers beneficial effects on hepatic oxidative stress, inflammation and fibrosis in mice. In conjunction with reductions in markers of liver injury in hyperlipidaemic patients, these findings suggest that structural engineering of LCn-3FAs offers a novel approach for the treatment of NASH. LAY SUMMARY: Long-chain omega-3 fatty acids are involved in multiple pathways regulating hepatic inflammation and fibrosis, but their susceptibility to peroxidation and use as an energy source may limit their clinical efficacy. Herein, we show that a structurally modified omega-3 fatty acid, icosabutate, overcame these challenges and had markedly improved antifibrotic efficacy in a mouse model of non-alcoholic steatohepatitis. A hepatoprotective effect of icosabutate was also observed in patients with elevated circulating lipids, in whom it led to rapid reductions in markers of liver injury.


Assuntos
Ácidos Graxos Ômega-3 , Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Biomarcadores/metabolismo , Butiratos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fibrose , Glutationa/metabolismo , Hepatite/patologia , Humanos , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia
17.
Sci Rep ; 11(1): 24219, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930972

RESUMO

Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1-6. TLR3, TLR4, TLR5 and TLR6 ligands (TLRLs) increased glucose metabolism. Furthermore, TLR4L and TLR5L increased oleic acid metabolism. The metabolic effects of TLRLs were not evident until after at least 24 h pre-incubation of the cells and here the metabolic effects were more evident for the metabolism of glucose than oleic acid, with a shift towards effects on oleic acid metabolism after chronic exposure (168 h). However, the stimulatory effect of TLRLs on myokine expression and secretion was detected after only 6 h, where TLR3-6L stimulated secretion of interleukin-6 (IL-6). TLR5L also increased secretion of interleukin-8 (IL-8), while TLR6L also increased secretion of granulocyte-macrophage colony stimulating factor (GM-CSF). Pre-incubation of the myotubes with IL-6 for 24 h increased oleic acid oxidation but had no effect on glucose metabolism. Thus IL-6 did not mimic all the metabolic effects of the TLRLs, implying metabolic effects beyond the actions of this myokine.


Assuntos
Citocinas/biossíntese , Metabolismo Energético , Interleucina-6/metabolismo , Ligantes , Músculo Esquelético/metabolismo , Receptores Toll-Like/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Imunidade Inata , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-34909682

RESUMO

BACKGROUND AND OBJECTIVE: A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes). METHODS: In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively. RESULTS: Both acute (4 â€‹h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid ß-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA. CONCLUSION: Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34909683

RESUMO

Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes. Acute (4 â€‹h) oleic acid oxidation was reduced in SENP2-knockdown (SENP2-KD) cells compared to control cells, with no difference in uptake. After prelabeling (24 â€‹h) with oleic acid, total lipid content and incorporation into triacylglycerol was decreased, while incorporation into other lipids, as well as complete oxidation and ß-oxidation was increased in SENP2-KD cells. Basal glucose uptake (i.e., not under insulin-stimulated conditions) was higher in SENP2-KD cells, whereas oxidation was similar to control myotubes. Further, basal glycogen synthesis was not different in SENP2-KD myotubes, but both insulin-stimulated glycogen synthesis and AktSer473 phosphorylation was completely blunted in SENP2-KD cells. In conclusion, SENP2 plays an important role in fatty acid and glucose metabolism in human myotubes. Interestingly, it also appears to have a pivotal role in regulating myotube insulin sensitivity. Future studies should examine the role of SENP2 in regulation of insulin sensitivity in other tissues and in vivo, defining the potential for SENP2 as a drug target.

20.
Obesity (Silver Spring) ; 29(10): 1582-1595, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464025

RESUMO

Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as ß -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.


Assuntos
Metabolismo Energético , Músculo Esquelético , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA